

### **IV CONGRESO IBEROAMERICANO** DE INGENIERÍA DE LOS ALIMENTOS

**ESTRATEGIAS DE VALOR AGREGADO Y PROCESAMIENTO PARA ALCANZAR SOSTENIBILIDAD Y RESILIENCIA EN SISTEMAS ALIMENTARIOS.** PABLO JULIANO/ CSIRO.

6 de Septiembre, 2024











### Strategie greater fo sustainability and resiliency

Pablo Juliano, Group Leader Food Processing and Supply Chains

Australia's National Science Agency





## Outline

- State of our food system and challenges
- Minimising waste Australia's national food waste strategy
  - National food waste strategy
  - Whole of crop and whole of animal opportunities
- Transition towards net zero emissions
  - Sustainable drying techs
  - Shelf stable foods
- Role of value addition



# Mega - shock: Population Growth





## Agricultural land per capita (1961-2016)

4 | Food value addition for sustainability and resilience | Juliano

# +71% **Food needed** by 2050



# State of our food system







of food produced is wasted











5 | Food value addition for sustainability and resilience | Juliano







animals & 12 plants = 75% calories





# Role of food processing



- SDG 2
- End hunger
- Achieve food security and improved nutrition
- Promote sustainable agriculture 6 | Food value addition for sustainability and resilience | Juliane

### **Food Security** Access to sufficient, safe, nutritious food for all people at all times

### Threats to food security

- Food waste
- Poor harvesting/storage
- Lack of effective food preservation
- Wars and conflict
- Environmental degradation
- Climate change
- Soil degradation

# Australian food systems challenges





### 53.2 farm infrastructure index score (out of 100)

High-income country average: 59.3

(higher = more developed)



2.6% of workforce employed in agriculture

OECD average: 4.8% ↓ from 3.2% in 2009



OECD average: 9.1%

↑ from 10.9% in 2011

### <u>Reshaping Australian Food Systems - CSIRO</u>



## National challenge:

Value adding in the agrifood industry to drive Australia's agri-food economy and food security



www.fial.com.au/sharing-knowledge/capturing-the-prize

8 | Food value addition for sustainability and resilience | Juliano



### Today's agrifood sector: 538,000 jobs/ \$61B (18/19) Potential by 2030: 842,000 jobs /\$200B



Australia manufactures 89% of its food and beverage mostly with imported ingredients and little value add to agricultural materials

### Australia produces substantially more food than it consumes





### www.agriculture.gov.au/abares/products/insights/australian-food-security-and-COVID-19



### **Australian Food Story: Report Released**

The Committee has made 35 recommendations to address food security in Australia, including:

- creating a comprehensive **National Food Plan**;
- appointing a **Minister for Food**;
- establishing a **National Food Council**;
- developing a National Food Supply Chain Map;
- measures to facilitate innovation in the production of food; and
- measures to eliminate food waste.

Committee Chair, <u>Meryl Swanson MP</u>



### Australian Food Story: Feeding the Nation and Beyond

Inquiry into food security in Australia

House of Representatives

Standing Committee on Agriculture

November 2023

CANBERRA



## Australian food systems roadmap











3.4 Aligning resilience with socioeconomic and environmental sustainability

### Focal areas

3.1 Enabling equitable access to healthy and sustainable diets 3.3 Facilitating Australia's transition to net zero emissions

### SUSTAINABLE GOALS







3.5 Increasing value and productivity

<u>Reshaping Australian Food Systems - CSIRO</u>





## Food loss and waste causes differ by region

739 Mt loss + 378 Mt waste = 1.1 Bt underutilised food (out of 13 Bt)



Source: WRI (2019) Reducing Food Loss and Waste: Setting a Global Action Agenda.



## principles

### hierarchies; standards

UN (a) unor decatantly approach





alue for the Economy, Well-Being and the Environ nent, 2017, 59, 3, 14-21, https://doi.org/10.1080/00139157.20

# UN Circularity Diagram



resource flow

within-lateral-sector;

+ data



keys to transition

### ! @ micro- meso- macro- scales

13 | Food value addition for sustainability and resilience | Juliano

## transition partnerships place-based solutions



# National Food Waste Strategy

Resources for Implementing the National Food Waste Strategy



Figure 6: Interpretation from National Baseline Report (Arcadis, 2019)

14 | Maximising value return from Australia's agrifood | Pablo Juliano

Reduce waste of raw materials,

 Bio-based materials/Biochemical processing Co-digestion/Anaerobic digestion Composting/Aerobic processes

Controlled combustion (waste-to-energy)









Arsic et al 2022

Value

Volume

# Material Flow Analysis

- a well-established tool to track the use of resources in a national economy
- complementary to economic accounts, SEEA framework
- used to measure circularity in the EU, Japan, China, the UNEP and OECD



### Legend

DE = domestic extraction; DPO = domestic processed outputs, i.e. wastes, emissions, dissipative uses and losses;

RME = raw material equivalents

Source: (Matthews et al. 2000, modified).

16 Food value addition for sustainability and resilience | Juliano



### The use of natural resources in the economy

A Global Manual on Economy-Wide Material Flow Accounting

OECD



eurostat

0-0

-0

Slide source: CSIRO Circular Economy For Missions, Heinz Schandl (Lead)

# Australia's biomass footprint 2019

### Australia, 2019, material footprint.



Slide source: CSIRO Circular Economy For Missions, Heinz Schandl (Lead)



18 | Food value addition for sustainability and resilience | Juliano





### 7.7 million tonnes, \$36B cost to the Australian economy 20Mt of CO<sub>2</sub>e GHG emissions1,2



Sources: 1) FIAL (2021) - National Food Waste Strategy Feasibility Study; 2) Fight Food Waste CRC (2020) food waste GHG impact estimates for whole food value chain; 3) Foodbank Hunger Report for 2023

19 | Food value addition for sustainability and resilience | Juliano



### Roadmap to halve Australia's food waste by 2030



www.environment.gov.au/system/files/resources/fca42414-c4df-4821-b195-4948ad673f69/files/roadmap-reducing-food-waste.pdf





# Whey is a significant FLW issue (opportunity) in Australia

Liquid whey end destinations (tonnes p.a.)



Data source: personal communication, PA Bontinck, Lifecycles, 9 December 2021.

21 | Food value addition for sustainability and resilience | Juliano

Underutilised whey:

• 2.4m tonnes p.a.

Potential new revenue:

• \$365m to \$1b

### Whey value addition options





### Volume range (L/day)

Juliano et al. 2017

## Fruit and vegetable losses



https://www.csiro.au/en/Research/AF/Areas/Food-manufacturing/Making-new-sustainable-foods/Mapping-

## Horticulture processing strategies





Stabilisation/Pre-processing is the first step before any processing

Food value addition for sustainability and resilience | Juliano 24

https://research.csiro.au/gippsland-food-hub/

### Hort Innovation









# NutriV

- Brought solution to key grower packer for large supern brassica and other vegetables
- Non-retail and waste products is converted into vegeta
- Supported snack line launch of Goodies offering 2 serve



# Nutrí V



### 100% of

K

# solar-films x greenhouse x crops



Semi-transparent solar films for glasshouses - concept c.f. (Ravishankar, Charles et al. 2021)







Cathryn O'Sullivan and team, CSIRO Ag&Food Sustainability Program



Flexi-solar strips x greenhouse x Cos lettuce. Plant growth 28 days under 0% cover (control) and 75% cover solar film shade treatments.

### Above ground biomass (g fresh mass) of plants grown under different shade treatments

using first iteration of printed solar films. Black bar indicates least significant difference at p=0.05. No treatments were statistically different to the control.

# circular aquaculture

### issue

- Effluents from fish/prawn
- Diversification
- Green shortage & quality

### solution

### Integrated system

- Microbials 
   bioavail
- Local, fresh, circular



### **Aquaponics**

27 | Food value addition for sustainability and resilience | Juliano Mat Cook, Mauricio Emerenciano, Cedric Simon and team – CSIRO Ag&Food, Livestock and Aquaculture Research Program

### Started 202<sup>e</sup> Nutrient Systems





GRAPHI

Industry survey and 4 trials FPM Sprint (2) & New SIP approved





https://www.mla.com.au/contentassets/79c16798add246bfa3162b9411022e93/a.cop.0061\_mla\_coproducts\_compendium.pdf

"Whole of carcass" utilisation

- cattle-derived collagen
- blood plasma co-products
- meat snacks
- red meat protein powder









Aarti Tobin

A high protein, low-fat, remarkably soluble hydrolysed meat protein powder which can be used as an ingredients across a range of food and beverages. The powder is shelf stable, nutrient dense, allergen-free and functionally superior to existing protein powders.





29 | Food value addition for sustainability and resilience | Juliano

### **Our Product Range**

**Isolated Meat** Minerals

Hydrolysed Meat Protein (~80% protein)

Hydrolysed Meat Protein Isolate (>90% protein)







Protein Fortified Foods





ion for sustainability and resilience | Juliano









# Australia's Protein Road



**Existing infrastructure** 

Maturity of technological solutions vs new infrastructure requirements for growth opportunities



| amap in                                            | Drivers: Market access<br>Duilding new<br>dustries, credentials<br>Cl. environmental) |
|----------------------------------------------------|---------------------------------------------------------------------------------------|
| High infrastructure requirer                       | nents                                                                                 |
| t-based protein ingredients Insect protein sources |                                                                                       |
| tion 9 Precision<br>fermentatio                    | n [                                                                                   |
| Cultivated<br>meats                                |                                                                                       |

New infrastructure

### <u>Australia's Protein Roadmap - CSIRO</u>

# The second domestication





Capacity: 150-200 L Temperature: 37–42°C Feedstock Efficiency: 4%

Capacity: 200-40,000 L Temperature: Optimized Feedstock Efficiency: 40-80%



Source: RethinkX, Impossible Foods



# Environmental issues for agriculture and food

### Agricultural production



- Land use change
- Biodiversity loss
- Soil degradation
- GHG emissions
- Water footprint
- Eutrophication (pollution/chemicals)
- Energy usage
- Crop loss

### **Processing and packaging**



- Water and energy use
- Effluent/waste disposal
- GHG emissions
- Water footprint
- Contamination
- Packaging materials
- Chemical usage

Retail



- Packaging
- Food waste
- GHG
- Recycling





WoA: "world's first regenerative grown, carbon-neutral oat milk"

APP: "Creating sustainable proteins from plants that taste great and are good for you and the environment"

JUST Egg uses

## 98% less water







Yes. And, in the process, we made eggs that are better for the planet, too.

35 | Food value addition for sustainability and resilience | Juliano



Sources - v2food: CSIRO, (2021). Global Beef Averages: Poore & Nemecek (2018), Mekonnen & Hoekstra (2010)

### B2B: Potential barriers to trade?



## Can we monitor its own transition towards green agrifood chain targets?







Frequency of each impact categories in Australian and other country studies from **selected 55** 37 | Food value addition for sustainability and resulties (2015–2022). LCA indicators to promote plant protein based foods

- Apply multiple LCA-based impact category indicators.
- Aligning LCA-based indicators with planetary boundaries.



Nazmul Islam



## Current LCA based data pools and tod CA data pool



Agricultural data sets of AusLCI: Agricultural data sets have been developed as part of the AusAgLCI.



**Best Practice Guide for Mid-Point** Life Cycle Impact Assessment in Australia

ALCAS Impact Assessment Committee

Renouf, M.A., Grant, T., Sevenster, M., Logie, J., Ridoutt, B., Ximenes, F., Bengtsson J., Cowie, A., Lane, J.

Version 2

(13/04/2018)

38 | Food value addition for sustainability and resilience | Juliano

## **GAP IN FOOD UNIT OPERATION DATA**

### Different types of evaporators

Forced circulation

- not prone to clogging
  can handle suspended solids including
- crystals
   typical applications include fruit and vegetable puree

- Centrifugal evaporator
  Centritherm®
  Rapid evaporation
  <1 second residence time with a 0.1 mm film</li>
  Operating temp as low 35°C
  Designed for heat sensitive products







# Different types of evaporators

### Scrape surface

- can handle very high viscosities
   >50000 cP
- Able to dry products
- Low residence time
- Operate under high vacuum
- Can be installed vertically or horizontal

| (:0:) |   |
|-------|---|
|       |   |
|       |   |
|       | J |





https://www.smsvt.com/technology/evaporatio n-technology/thin-filmevaporator

# Different types of evaporators

- Rothoterm evaporator
- avoids thermal degradation of heat sensitive materials
- quantity of solids in the dryer between 25% and 75% full.





# Forward Osmosis

Forward Osmosis is a membrane based process that operates under low hydraulic pressure and uses selective membranes to concentrate liquids





**Key Attributes** • Cost effective • Non-thermal concentration, proteins not denatured • Retention of aroma compounds • Enhanced functionality? • Utilised early in the supply chain = reduced logistical costs

### Comparison of FO with Evaporation





Concentrate to dryer pre-heater 11,772 kg/h @50% solids

> Water 33,732 kg/h



## Comparison of FO with Evaporation Energy and cost Energy \$/tonne concentrate





Steam - \$0.08/kg Electricity - \$0.29/kWh

Evaporator CIP energy not included



• Throughput

• Costs (Capital & Operating)

• Product Quality









46 | Food value addition for sustainability and resilience | Juliano



# Microwave tunnel dryer



### 47 | Food value addition for sustainability and resilience | Juliano

### **REV60 kW**

2450 mHz Vacuum: 25-300 Torr 38.3 x 12.5 ft (12.2 x 4.6m) Ceiling: 15 ft (4.6 m)



### **REV100 & REV120 kW**

Freq: 2450 mHz Vacuum: 22-300 Torr Size: 55.7 x 14.8 ft (16.6 x 4.6 m) Ceiling: 15 ft (4.6 m)

### https://youtu.be/0sAY2AcVWkl



# Freeze drying innovation



## Low cost and emissions freeze drying using CO2 as refrigerant

48 | Food value addition for sustainability and resilience | Juliano







Filter caked materials, flakes, pastels, slurries, fibres, gels 49 | Food value addition for sustainability and resilience | Juliano https://www.ingetecsa.com/machines/spiral-flash-dryer/

An ultrasonic device and processes based on the effective application of ultrasound at <u>high</u> <u>frequencies</u> through <u>indirect transmission</u> of ultrasonic energy (i.e., transducer->liquid->steel transmission plate->product)



50 | Food valu Carriedhoutsat highert, US frequencey (225 kHz) - reduced noise levels

- Facilitates <u>efficient</u> <u>transmission</u> of US energy as mismatch of acoustic impedance is minimised (liquid->steel->food)
- <u>Better heating control</u> of samples (air circulation in transmission plate & liquid circulation)
- Provides the energy required for vaporisation or sublimation without the need for additional heating device

# Case Study: Drying of medicinal cannabis

(other products tested: fruits, meat, coffee, mushroom, soy protein concentrate)

Industry drying

vacuum FD

US-assisted AFD

51 | Food value addition for sustainability and resilience | Juliano

### VALUE PROPOSITION:



- <u>similar</u> drying rate as FD



### ENERGY EFFICIENT

- <u>35% less</u> energy consumption compared with FD
- <u>20% less</u> energy consumption compared with Industry



- <u>~100%</u> cannabinoids retention (similar with FD)
- about <u>13% better</u> retention of cannabinoids than Industry

# How to ensure supply chain resiliency?

 Australia – has developed a level of food security complacency • Food processing in remote northern Australia is limited to small niche businesses and bakery goods Most of Australia's food processing is located in southern Australia Long supply chains for northern Australia (3000 – 4000 km), are vulnerable to a wide range of perturbations -i.e. climate and fuel

shocks







### SPARSE & REMOTE POPULATIONS

|      | People per s |
|------|--------------|
|      | 100.0 or     |
|      | 10.0 to 1    |
| 1000 | 1.0 to 10    |
|      | 0 1 to 1.0   |
|      | Less that    |





### Key Northern Australian food supply conduits







# Shelf-stable foods provide increased food security options for populations where cool storage of fresh foods is either <u>problematic</u> or <u>non-existent</u>.









## Potential shelf-stable product types

- **Functional meal ingredients**: Ready-to-use, pre-prepared food ingredients for consumers (e.g., meat powders), as well as for manufacturers and other food service organisations.
- **Snacks and convenience foods**: Opportunities including fruit powder and ready-to-drink juices, plus ready-to-eat snacks such as dried beef and fruit straps.
- **Pet food/pet snacks**: Opportunities from waste meat and fish produce, including human-grade premium pet food products for cats and dogs.
- *Health, wellbeing and beauty products*: Northern provenance ingredients for cosmetics, protein powders (meat-based, but possibly also jack fruit); and nutraceuticals that include plant/fruit powders and collagen powders; 'Indigenous-ceuticals' from First Nations foods such as Kakadu plum powder/puree).
- **Ready meals**: Home and out-of-home use, such as by campers, defence forces, aid/relief agencies, as well as caterers and others in the food service industry. Also potential for supplying manufacturers of complete ready meals with key meal components (e.g. meat, gravy and vegetables).



## Aarkets and products for shelf-stable foods

- Global demand for shelf-stable foods is increasing
- For wet and dry product lines
- For human and animal/pet consumption
- Improvements in food technology + household food security concerns
- APAC Region
  - shelf-stable meats \$US 8.7 B
  - shelf-stable seafood \$US 5.5 B







# In pack shelf stable food











High Pressure partnership



High Pressure Thermal Processing – Success through industry-research



# **High Pressure Thermal Processing**

The temperature of the product and the pressurisation water increases instantly due to heating from compression.

Minimises the negative impacts of thermal processing on food products.







© Hiperbaric 2023



## Equipment development

### A multi-layered canister that facilitates HPTP in a cold HPP machine

*Optimised heat retention through*:

- Triple layer of insulating material
   PTFE: Lowest compression heating
   PP: Compression heating ≈ water
   HDPE: Compression heating > water; active heating!
- Sealed with moving piston: locks out cold water & allows pressure transmission

High Pressure Thermal Processing – Success through industry-research





High Pressure partnership

### Canister available through Hiperbaric!



High Pressure Thermal Processing – Success through industry-research

—∙Piston ——Inner layer

-.3<sup>rd</sup> layer





## Microwave assisted sterilizaiton





62 | Food value addition for sustainability and resilience | Juliano



129mm x 129mm x 31.2mm 8.5oz fill weight (~250g)



171mm x 129mm X 32.5mm 13.9oz fill weight (-410g)



171mm x 129mm X 25.7mm 10.5oz fill weight (~300g)



171mm x 129mm X 32.5mm 12.7oz fill weight (~375g)



241mm x 125mm X 40mm Bottom Gusset Pouch (~300g fill weight)



184mm x 133mm Pillow Pouch (~230g fill weight)







## Take home messages

- Supply chain resilience through
  - Food waste avoidance (shelf life extension) and upcycling
  - Developing of shelf stable foods to address food insecurity in remote  $\bigcirc$ locations
- A multi-indicator approach is required to agree on sustainable targets
- Novel evaporation, drying and sterilisation techs can drive the change



### Agriculture and Food

Pablo Juliano Group Leader |Food Processing and Supply Chains <u>pablo.juliano@csiro.au</u> <u>https://people.csiro.au/j/p/pablo-juliano</u>

Australia's National Science Agency